skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zamir, Nida"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Scheduling in multi-channel wireless communication system presents formidable challenges in effectively allocating resources. To address these challenges, we investigate a multi-resource restless matching bandit (MR-RMB) model for heterogeneous resource systems with an objective of maximizing long-term discounted total rewards while respecting resource constraints. We have also generalized to applications beyond multi-channel wireless. We discuss the Max-Weight Index Matching algorithm, which optimizes resource allocation based on learned partial indexes. We have derived the policy gradient theorem for index learning. Our main contribution is the introduction of a new Deep Index Policy (DIP), an online learning algorithm tailored for MR-RMB. DIP learns the partial index by leveraging the policy gradient theorem for restless arms with convoluted and unknown transition kernels of heterogeneous resources. We demonstrate the utility of DIP by evaluating its performance for three different MR-RMB problems. Our simulation results show that DIP indeed learns the partial indexes efficiently. 
    more » « less